

Comprehensive PVD simulation: Application to antireflective coatings produced by OAD.

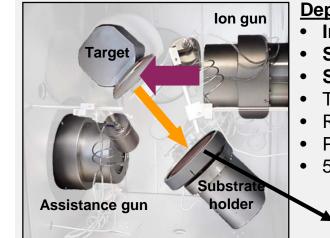
14 September 2021

A. Besnard¹, N. Watiez¹, F. Paumier², S. Hurand², C. Marsal², F. Maudet³, B. Lacroix⁴, A.J. Santos⁴, R. Garcia⁴, F.M. Morales⁴, C. Dupeyrat⁵, G. Baptiste⁵, S. Lucas^{6,7}

¹Arts et Metiers Science and Technology - Cluny (FR)
 ²Institut Pprime – Chasseneuil-du-Poitou (FR)
 ³Helmholtz-Zentrum - Berlin (DE)
 ⁴IMEYMAT University of Cádiz - Cadiz (SP)
 ⁵Safran Electronics and Defense - Saint-Benoît (FR)
 ⁶University of Namur, LARN-NISM - Namur (BE)
 ⁷Innovative Coating Solutions (ICS) - Namur (BE)

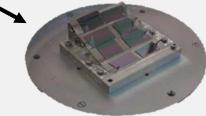
14/09/2021	Comprehensive PVD simulation: Application to antireflective coatings produced by OAD.					
PLATHINIUM	Introduction					
	The initial THE JOURNAL OF PHYSICAL CHEMISTRY C Pubs.acs.org/JPCC					
Introduction						
1. Sputtering	Nanostructure and Physical Properties Control of Indium Tin Oxide Films Prepared at Room Temperature through Ion Beam Sputtering Deposition at Oblique Angles					
2. Transport	⁴ B. Lacroix, ^{*,†,‡} A. J. Santos, ^{†,‡} S. Hurand, [§] A. Corvisier, [§] F. Paumier, ^{*,§} T. Girardeau, [§] F. Maudet, ^{§,⊥} ⁵ C. Dupeyrat, [∥] R. García, ^{†,‡} and F. M. Morales ^{†,‡}					
3. Growth	6 [†] Department of Materials Science and Metallurgic Engineering, and Inorganic Chemistry, University of Cádiz, E-11510 Puerto Real, 7 Spain					
4. Optic	 ^a IMEYMAT: Institute of Research on Electron Microscopy and Materials of the University of Cádiz, E-11510 Puerto Real, Spain ^b PPRIME Institute, UPR 3346 CNRS - University of Poitiers - ENSMA, SP2MI, F-86962 Futuroscope-Chasseneuil, France ^l Safran Electronics and Defense, 26 avenue des Hauts de la Chaume, F-86280 Saint-Benoît, France 					
Conclusion	Published in 2019					
	+ all the analyses and modelling performed within this study					
	Goal: introduction of porosity in ITO films by OAD IBS to decrease the optical indexes (n, k) and enhance the IR transmission					
	□ The question: →Can we reproduce the optical properties of the films with a comprehensive process simulation?					

 $\mathbf{\lambda}$


Introduction

Experimental setup

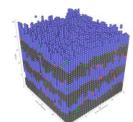
Ion Beam Sputtering (IBS) deposition technique


Introduction

- 1. Sputtering
- 2. Transport
- 3. Growth
- 4. Optic
- Conclusion

Deposition conditions:

- Incidents ions: Ar (or Xe) at 1.2 keV
- Substrate tilt angle: from 50 to 85°
- Substrates: sapphire, silicon
- Target: ITO (In₂O₃/SnO₂ 90/10 wt.%)
- Room temperature
- Pressure: 2*10⁻³ Pa
- 5 sccm O₂ introduced through assistance gun


Digital process

La<mark>Bo</mark>MaF

Métiers

- 1. Sputtering: SRIM
- 2. Transport: SIMTRA
- 3. Growth: NASCAM
- 4. Optic: NASCAM plug-in

1. Sputtering

- 2. Transport
- 3. Growth
- 4. Optic
- Conclusion

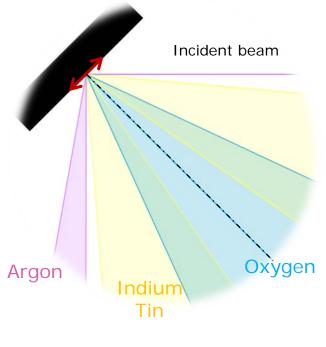
 \rightarrow 95 % ITO and 5 % In₄Sn₃O₁₂ + traces of SnO₂

90

180

PLATHINIUM

SRIM calculation 1,6 1,4 Oxygen Probability (%) Introduction 1,2 Argon 1 0,8 1. Sputtering 0,6 0,4 2. Transport 0,2 0 45 15 30 60 75 0 3. Growth Ejection angle (°) 1 4. Optic **brobability** (%) **Probability** (%) 8.0 0.7 0.6 0.4 0.2 0.1 Conclusion V 0 ļα 45 -180 -135 -90 -45 0 90 135 z


Sputtering

LaBoMaP.

rts

et Métiers

Azimuthal angle (°)

Species	Target composition (%)	Sputtered flow composition (%)	Sputtered flow energy (eV)
Tin	3.62	2.84 (2.91)	27.5
Indium	35.66	35.27(36.20)	23.2
Oxygen	60.72	59.33 (60.89)	16.7
Argon	0	2.56	216.7

14/	09/	20	2'

Comprehensive PVD simulation: Application to antireflective coatings produced by OAD.

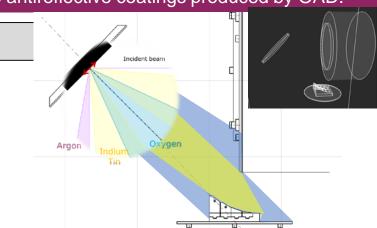
PLATHINIUM

Transport

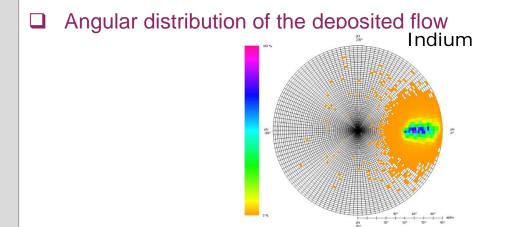
LaB

ома

SIMTRA calculation

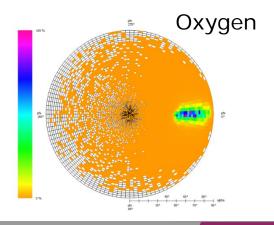

Flow filtering

Low pressure 2*10⁻³ Pa


 \rightarrow Few collisions

Introduction

- 1. Sputtering
- 2. Transport
- 3. Growth
- 4. Optic
- Conclusion



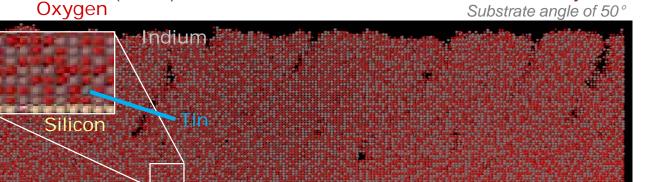
Species	Target composition (%)	Sputtered flow composition (%)	Deposited flow composition (%)	Sputtered flow energy (eV)	Deposited flow energy (eV)
Tin	3.62	2.84 (2.91)	1.62 (1.63)	27.5	13.01
Indium	35.66	35.27(36.20)	19.65(19.70)	23.2	11.57
Oxygen	60.72	59.33 (60.89)	78.48 (78.67)	16.7	11.65
Argon	0	2.56	0.24	216.7	167.12

 \rightarrow Geometry of the system

 \rightarrow Angular distribution of the emitted flow

Comprehensive PVD simulation: Application to antireflective coatings produced by OAD.

NASCAM (4.7.X) calculation in reactive mode: stoichiometry of 1.5 (30 / 2Me)


PLATHINIUM

Introduction

1. Sputtering

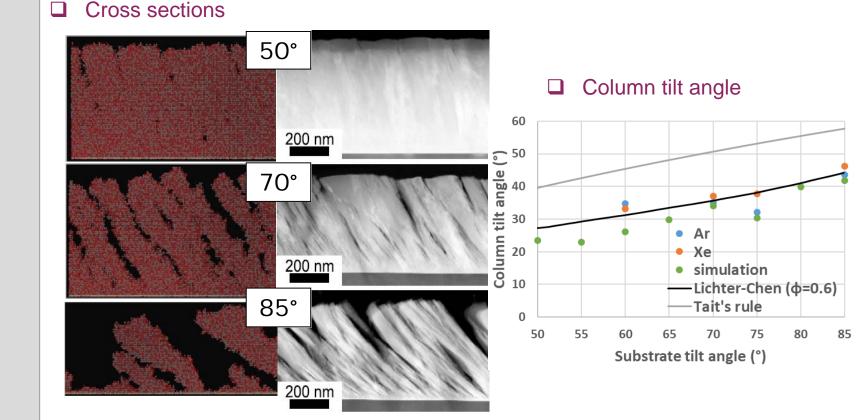
- 2. Transport
- 3. Growth
- 4. Optic
- Conclusion

Arts Institute of et Métiers

Composition

Growth

Species	Target composition (%)	Sputtered flow composition (%)	Deposited flow composition (%)	Film composition (%)
Tin	3.62	2.84 (2.91)	1.62 (1.63)	3.33
Indium	35.66	35.27(36.20)	19.65(19.70)	40.35
Oxygen	60.72	59.33 (60.89)	78.48 (78.67)	56.31
Argon	0	2.56	0.24	0.01
	60 50 40 40 40 50 40 40 40 40 50 40 40 40 40 40 40 40 40 40 4	In So.00	60 50 40 30 20 50 60 70 80 Angle du substrat (en °)	O In →Ar →Xe Sn



50°

Growth

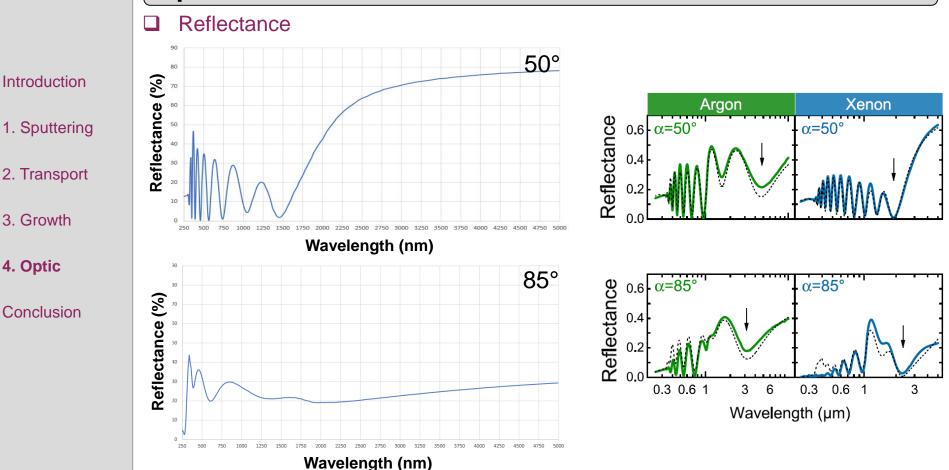
Introduction

- 1. Sputtering
- 2. Transport
- 3. Growth
- 4. Optic
- Conclusion

- Good reproduction of the composition, the morphologies and the column tilt angle.
- □ What about the optical properties?

14/09/2021

PLATHINIUM


Optic NASCAM (7.7.x) Plugin : "Optics" Introduction \rightarrow Convert the film morphology into a multilayer with optical indexes related to the porosity. 1. Sputtering OL 3 OL 2 2. Transport pore 2.5 3. Growth 0 % Optical index n Optical index k Porosity 1.5 4. Optic AND IN COLUMN TO A 50 % 0.5 Conclusion 1000 2000 3000 1000 2000 5000 5000 Wavelength (nm) Wavelength (nm) Variation of the film optical indexes with the depth 50° 70° 500 500 Film thickness Film thickness 400 400 300 300 200 200 100 100 0 0 1,6 1,8 2 2,2 1,6 1,8 2 2,2 **Optical index n** Optical index n

LaBoMaP rts et Métiers

3. Growth

4. Optic

Optic

- Good results for the visible range. More deviations in the IR range.
- Globally excellent results taken into account the simplification used in the simulations!

LaBoMaP rts et Métiers

4		0	0	10	0	0	4
	4/	U	9	/2	U	2	

Introduction

2. Study case

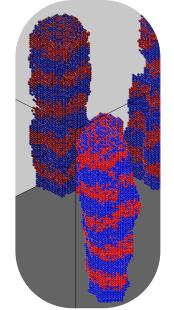
3. Analyses

4. Examples

Conclusion

1. Flux?

Comprehensive PVD simulation: Application to antireflective coatings produced by OAD.


Conclusion

- Oblique angle deposition of ITO by ion beam sputtering was reproduced digitally. It requires a good knowledge of:
 - The system geometry (size and relative position of the components in the vacuum chamber)
 - The deposition conditions (pressure, temperature, energy of the ion beam, etc.)
 - The target specifications (elemental and phases composition, racetrack)
- SRIM, SIMTRA, NASCAM were used for the three steps of the process. For each step, millions of particles are used as input to ensure enough particles in the output for the statistical treatments (around few hundred of thousands).
 - Digital films morphologies, composition, thicknesses correctly reproduce the experimental ones.
 - Optical properties of the digital films are calculated from the NASCAM plugin "Optics"
 - The principle of the variation of the optical indexes with the depth in the films (and function of the substrate tilt angle) is found
 - The reflectance curves gives positive results but can be improved

Thank you for your attention.

Have you got some questions?